Academia

El papel del chile en el Nobel de Medicina

NOBEL EXPLICADO. Para comprender la sensación de frío y calor, David Julius utilizó la capsaicina, compuesto que le da el picor a los chiles

El papel del chile en el Nobel de Medicina

El papel del chile en el Nobel de Medicina

La Crónica de Hoy / La Crónica de Hoy

Nuestra capacidad para sentir el calor, el frío y el tacto es esencial para la supervivencia y sustenta nuestra interacción con el mundo que nos rodea. En nuestra vida diaria damos por sentadas estas sensaciones, pero ¿cómo se inician los impulsos nerviosos para que se puedan percibir la temperatura y la presión? Esta cuestión ha sido resuelta por los premios Nobel de este año.

David Julius utilizó capsaicina, un compuesto picante de los chiles que induce una sensación de ardor, para identificar un sensor en las terminaciones nerviosas de la piel que responde al calor. Ardem Patapoutian utilizó células sensibles a la presión para descubrir una nueva clase de sensores que responden a estímulos mecánicos en la piel y los órganos internos. Estos descubrimientos revolucionarios lanzaron intensas actividades de investigación que llevaron a un rápido aumento en nuestra comprensión de cómo nuestro sistema nervioso percibe los estímulos mecánicos, fríos y calientes. Los galardonados identificaron los eslabones faltantes críticos en nuestra comprensión de la compleja interacción entre nuestros sentidos y el medio ambiente.

Antes de los descubrimientos de David Julius y Ardem Patapoutian, nuestra comprensión de cómo el sistema nervioso percibe e interpreta nuestro entorno todavía contenía una pregunta fundamental sin resolver: ¿cómo se convierten la temperatura y los estímulos mecánicos en impulsos eléctricos en el sistema nervioso?

¡La ciencia se calienta!

En la última parte de la década de 1990, David Julius de la Universidad de California, San Francisco, EE. UU., Vio la posibilidad de grandes avances al analizar cómo el compuesto químico capsaicina causa la sensación de ardor que sentimos cuando entramos en contacto con los chiles. Ya se sabía que la capsaicina activaba las células nerviosas causando sensaciones de dolor, pero la forma en que esta sustancia química ejercía esta función era un acertijo sin resolver. Julius y sus colaboradores crearon una biblioteca de millones de fragmentos de ADN correspondientes a genes que se expresan en las neuronas sensoriales que pueden reaccionar al dolor, el calor y el tacto. Julius y sus colegas plantearon la hipótesis de que la biblioteca incluiría un fragmento de ADN que codifica la proteína capaz de reaccionar con la capsaicina. Expresaron genes individuales de esta colección en células cultivadas que normalmente no reaccionan a la capsaicina. Después de una búsqueda laboriosa, se identificó un solo gen que podía hacer que las células fueran sensibles a la capsaicina (Figura 2). ¡Se había encontrado el gen para la detección de capsaicina! Experimentos adicionales revelaron que el gen identificado codificaba una nueva proteína de canal iónico y este receptor de capsaicina recién descubierto se denominó más tarde TRPV1. Cuando Julius investigó la capacidad de la proteína para responder al calor, se dio cuenta de que había descubierto un receptor sensible al calor que se activa a temperaturas que se perciben como dolorosas (Figura 2).

Figura 2 David Julius usó capsaicina de chiles para identificar TRPV1, un canal iónico activado por el calor doloroso. Se identificaron canales iónicos relacionados adicionales y ahora entendemos cómo diferentes temperaturas pueden inducir señales eléctricas en el sistema nervioso.

El descubrimiento de TRPV1 fue un gran avance que abrió el camino para desentrañar receptores adicionales sensibles a la temperatura. Independientemente el uno del otro, tanto David Julius como Ardem Patapoutian usaron la sustancia química mentol para identificar TRPM8, un receptor que se demostró que se activa con el frío. Se identificaron canales iónicos adicionales relacionados con TRPV1 y TRPM8 y se descubrió que se activan mediante un rango de temperaturas diferentes. Muchos laboratorios llevaron a cabo programas de investigación para investigar las funciones de estos canales en la sensación térmica mediante el uso de ratones manipulados genéticamente que carecían de estos genes recién descubiertos. El descubrimiento de TRPV1 por David Julius fue el gran avance que nos permitió comprender cómo las diferencias de temperatura pueden inducir señales eléctricas en el sistema nervioso.

Bajo presión

Mientras se desarrollaban los mecanismos para la sensación de temperatura, no estaba claro cómo los estímulos mecánicos podrían convertirse en nuestros sentidos del tacto y la presión. Los investigadores habían encontrado previamente sensores mecánicos en bacterias, pero los mecanismos subyacentes al tacto en los vertebrados seguían siendo desconocidos. Ardem Patapoutian, que trabaja en Scripps Research en La Jolla, California, EE. UU., Deseaba identificar los escurridizos receptores que se activan mediante estímulos mecánicos.

Patapoutian y sus colaboradores identificaron por primera vez una línea celular que emitía una señal eléctrica mensurable cuando se pinchaban células individuales con una micropipeta. Se asumió que el receptor activado por fuerza mecánica es un canal iónico y en un paso siguiente se identificaron 72 genes candidatos que codifican posibles receptores. Estos genes fueron inactivados uno a uno para descubrir el gen responsable de la mecanosensibilidad en las células estudiadas. Después de una ardua búsqueda, Patapoutian y sus colaboradores lograron identificar un solo gen cuyo silenciamiento hizo que las células se volvieran insensibles a los pinchazos con la micropipeta. Se había descubierto un canal de iones mecanosensibles nuevo y completamente desconocido y se le dio el nombre de Piezo1, después de la palabra griega para presión (í; píesi). A través de su similitud con Piezo1, se descubrió un segundo gen y se denominó Piezo2. Se encontró que las neuronas sensoriales expresan altos niveles de Piezo2 y estudios posteriores establecieron firmemente que Piezo1 y Piezo2 son canales iónicos que se activan directamente por el ejercicio de presión sobre las membranas celulares (Figura 3).

Figura 3 Patapoutian usó células mecanosensibles cultivadas para identificar un ion canal activado por fuerza mecánica. Después de un arduo trabajo, Piezo1 fue identificado. Basado en su similitud con Piezo1, se encontró un segundo canal iónico (Piezo2).

El avance de Patapoutian dio lugar a una serie de artículos de su grupo y de otros, que demostraban que el canal iónico Piezo2 es esencial para el sentido del tacto. Además, se demostró que Piezo2 juega un papel clave en la detección de importancia crítica de la posición y el movimiento del cuerpo, conocida como propiocepción. En trabajos posteriores, se ha demostrado que los canales Piezo1 y Piezo2 regulan procesos fisiológicos importantes adicionales, como la presión arterial, la respiración y el control de la vejiga urinaria.

¡Todo tiene sentido!

Los descubrimientos revolucionarios de los canales TRPV1, TRPM8 y Piezo por los premios Nobel de este año nos han permitido comprender cómo el calor, el frío y la fuerza mecánica pueden iniciar los impulsos nerviosos que nos permiten percibir y adaptarnos al mundo que nos rodea. Los canales TRP son fundamentales para nuestra capacidad de percibir la temperatura. El canal Piezo2 nos dota del sentido del tacto y la capacidad de sentir la posición y el movimiento de las partes de nuestro cuerpo. Los canales TRP y Piezo también contribuyen a numerosas funciones fisiológicas adicionales que dependen de la detección de temperatura o estímulos mecánicos. La intensa investigación en curso que se originó a partir de los descubrimientos galardonados con el Premio Nobel de este año se centra en dilucidar sus funciones en una variedad de procesos fisiológicos. Este conocimiento se está utilizando para desarrollar tratamientos para una amplia gama de enfermedades, incluido el dolor crónico.